JOURNAL OF APPROXIMATION THEORY 25, 89-90 (1979)

Note

An Application of a Fixed-Point Theorem to Approximation Theory

S. P. SINGH

Department of Mathematics, Statistics and Computer Science, Memorial University, St. John's, Newfoundland, Canada

Communicated by E. W. Cheney

Received March 4, 1977

In this note, an extension of a theorem of Brosowski is given where linearity of the function and the convexity of the set are relaxed.

Brosowski [1] has proved the following:

THEOREM. Let T be a contractive linear operator on a normed linear space X. Let C be a T-invariant subset of X and x a T-invariant point. If the set of best C-approximants to x is nonempty, compact, and convex, then it contains a T-invariant point.

A similar theorem will be proved when T is not a linear operator and the set of best C-approximants is not necessarily a convex set.

We need the following definition.

Let X be a linear space. A subset C in X is said to be starshaped if there is a point p in C such that $x \in C$ and $0 \le \lambda \le 1$ implies $\lambda p + (1 - \lambda)x \in C$.

THEOREM. Let T be a contractive operator on a normed linear space X. Let C be a T-invariant subset of X and x a T-invariant point. If the set of best C-approximants to x is nonempty, compact, and starshaped, then it contains a T-invariant point.

Proof of the Theorem. Let D be the set of best C-approximants to x. Then $T: D \to D$ (since, if $y \in D$, then $||Ty - x|| = ||Ty - Tx|| \le ||y - x||$, then $Ty \in D$).

Take $p \in D$ such that $\lambda p + (1 - \lambda)x \in D$ for all $x \in D$ and $0 \leq \lambda \leq 1$.

Let k_n , $0 \leq k_n < 1$, be a sequence of real numbers such that $k_n \to 1$ as $n \to \infty$. Then define

$$T_n: D \to D$$

by $T_n x = k_n T x + (1 - k_n) p$ for all $x \in D$.

Since T maps D into D, T_n also maps D into D for each n. Also, we have

$$\|T_n x - T_n y\| = k_n \|Tx - Ty\|$$

$$\leq k_n \|x - y\|$$

$$< \|x - y\| \text{ for all } x, y \in D, x \neq y.$$

Then, since D is compact, T_n has a unique fixed point, say x_n for each n (Edelstein's Theorem [2]). Thus, $T_n x_n = x_n$ for each n. Since D is compact, x_n has a convergent subsequence x_{n_i} converging to \bar{x} say.

We claim that $T\bar{x} = \bar{x}$. Now, $x_{n_i} = T_{n_i}x_{n_i} = (1 - k_{n_i})p + k_{n_i}Tx_{n_i}$. Taking limit as $i \to \infty$, $k_{n_i} \to 1$, we have $\bar{x} = T\bar{x}$. $(x_{n_i} \to \bar{x}$ then $Tx_{n_i} \to T\bar{x}$ as T is continuous.) Thus \bar{x} is a T invariant.

Each convex set is necessarily starshaped, but a starshaped set need not be convex.

References

- 1. B. BROSOWSKI, Fix punktsatze in der Approximations theorie, Mathematica (Cluj) 11 (1969), 195–220.
- M. EDELSTEIN, On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962), 74-79.