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In this note,· an extension of a theorem of Brosowski is given where linearity
of the function and the convexity of the set are relaxed.

Brosowski [1] has proved the following:

THEOREM. Let T be a contractive linear operator on a normed linear space X.
Let C be a T-invariant subset of X and x a T-invariant point. If the set ofbest
C-approximants to x· isnonempty, compact, and convex, then it contains a
T-invariant point.

A similar theorem will be proved when T is not a linear operator and the
set of best C-approximants is not necessarily a convex set.

We need the following definition.
Let X be a linear space. A subset C in X is said to be starshaped if there is a

point p in C such that x E C and 0 ~ A~ I implies Ap + (1 - A)x E C.

THEOREM. Let T be a contractive operator on a normed linear space X. Let
C be a T-invariant subset of X and x a T-invariant point. If the set ofbest C
approximants to x is nonempty, compact, and starshaped, then it contains a
T-invariant point.

Proofofthe Theorem. Let D be the set of best C-approximants to x. Then
T: D - D (since, if y E D, then II Ty - x II = II Ty - Tx II ~ II y - x II, then
TyED).

Take p E D such that Ap + (1 - A)x E D for all x EO D and 0 ~ A ~ 1.
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Let k n , 0 ~ k n < 1, be a sequence of real numbers such that k n~ 1 as
n ~ 00. Then define

by Tnx = knTx + (1 - kn)p for all XED.

Since T maps D into D, Tn also maps D into D for each n. Also, we have

II Tnx - Tny II = k n II Tx - Ty II
~ knllx -YII
< II x - y II for all x, y E D, x =F y.

Then, since D is compact, Tn has a unique fixed point, say Xn for each n
(Edelstein's Theorem [2]). Thus, Tnxn = Xn for each n. Since D is compact,
X n has a convergent subsequence x n . converging to x say.

We claim that Tx = x. Now, x n '= Tn.xn. = (1 - kn)p + kn.Txn..
Takinglimitasi~oo,kn.~ 1,~ehave'x ~ Tx.(xn.~xthenTxn.~Tx

as T is continuous.) Thus x'is a T invariant. • •
Each convex set is necessarily starshaped, but a starshaped set need not be

convex.
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